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Abstract 10 

Background:  Technological advances (e.g. directional drilling, hydraulic fracturing), have led 11 

to increases in unconventional natural gas development (NGD), raising questions about health 12 

impacts.   13 

Objectives:  We estimated health risks for exposures to air emissions from a NGD project in 14 

Garfield County, Colorado with the objective of supporting risk prevention recommendations in 15 

a health impact assessment (HIA). 16 

Methods:  We used EPA guidance to estimate chronic and subchronic non-cancer hazard indices 17 

and cancer risks from exposure to hydrocarbons for two populations: (1) residents living > ½ 18 

mile from wells and (2) residents living ≤ ½ mile from wells. 19 

Results:  Residents living ≤ ½ mile from wells are at greater risk for health effects from NGD 20 

than are residents living > ½ mile from wells. Subchronic exposures to air pollutants during well 21 

completion activities present the greatest potential for health effects.   The subchronic non-cancer 22 

hazard index (HI) of 5 for residents ≤ ½ mile from wells was driven primarily by exposure to 23 

trimethylbenzenes, xylenes, and aliphatic hydrocarbons.  Chronic HIs were 1 and 0.4. for 24 

residents ≤ ½ mile from wells and > ½ mile from wells, respectively.  Cumulative cancer risks 25 

were 10 in a million and 6 in a million for residents living  ≤ ½ mile and > ½ mile from wells, 26 

respectively, with benzene as the major contributor to the risk.  27 

Conclusions:  Risk assessment can be used in HIAs to direct health risk prevention strategies.  28 

Risk management approaches should focus on reducing exposures to emissions during well 29 

completions.  These preliminary results indicate that health effects resulting from air emissions 30 

during unconventional NGD warrant further study. Prospective studies should focus on health 31 

effects associated with air pollution. 32 
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Abbreviations
1
 38 

1.0  Introduction 39 

The United States (US) holds large reserves of unconventional natural gas resources in 40 

coalbeds, shale, and tight sands.  Technological advances, such as directional drilling and 41 

hydraulic fracturing, have led to a rapid increase in the development of these resources.  For 42 

example, shale gas production had an average annual growth rate of 48 percent over the 2006 to 43 

2010 period and is projected to grow almost fourfold from 2009 to 2035 (US EIA 2011).  The 44 

number of unconventional natural gas wells in the US rose from 18,485 in 2004 to 25,145 in 45 

2007 and is expected to continue increasing through at least 2020 (Vidas and Hugman 2008).  46 

With this expansion, it is becoming increasingly common for unconventional natural gas 47 

development (NGD) to occur near where people live, work, and play.  People living near these 48 

development sites are raising public health concerns, as rapid NGD exposes more people to 49 

various potential stressors (COGCC 2009a).   50 

  The process of unconventional NGD is typically divided into two phases: well 51 

development and production (EPA 2010a, US DOE 2009).  Well development involves pad 52 

preparation, well drilling, and well completion.  The well completion process has three primary 53 

stages:  1) completion transitions (concrete well plugs are installed in wells to separate fracturing 54 

stages and then drilled out to release gas for production); 2) hydraulic fracturing (“fracking”:  the 55 

high pressure injection of water, chemicals, and propants into the drilled well to release the 56 

                                                 
1
 BTEX, benzene, toluene, ethylbenzene, and xylenes; COGCC, Colorardo  Oil and Gas 

Conservation Commission; HAP, hazardous air pollutant; HI, hazard index; HIA, health impact 

assessment; HQ, hazard quotient;  NATA, National Air Toxics Assessment; NGD, natural gas 

development 
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natural gas); and 3) flowback, the return of fracking and geologic fluids, liquid hydrocarbons 57 

(“condensate”) and natural gas to the surface (EPA 2010a, US DOE 2009).   Once development 58 

is complete, the “salable” gas is collected, processed, and distributed.  While methane is the 59 

primary constituent of natural gas, it contains many other chemicals, including alkanes, benzene, 60 

and other aromatic hydrocarbons (TERC 2009).     61 

As shown by ambient air studies in Colorado, Texas, and Wyoming, the NGD process 62 

results in direct and fugitive air emissions of a complex mixture of pollutants from the natural 63 

gas resource itself as well as diesel engines, tanks containing produced water, and on site 64 

materials used in production, such as drilling muds and fracking fluids (CDPHE 2009; Frazier 65 

2009; Walther 2011; Zielinska et al. 2011).   The specific contribution of each of these potential 66 

NGD sources has yet to be ascertained and pollutants such as petroleum hydrocarbons are likely 67 

to be emitted from several of these NGD sources.    This complex mixture of chemicals and 68 

resultant secondary air pollutants, such as ozone, can be transported to nearby residences and 69 

population centers (Walther 2011, GCPH 2010).   70 

Multiple studies on inhalation exposure to petroleum hydrocarbons in occupational 71 

settings as well as residences near refineries, oil spills and petrol stations indicate an increased 72 

risk of eye irritation and headaches, asthma symptoms, acute childhood leukemia, acute 73 

myelogenous leukemia, and multiple myeloma (Glass et al. 2003; Kirkeleit et al. 2008; Brosselin 74 

et al. 2009; Kim et al. 2009; White et al. 2009).  Many of the petroleum hydrocarbons observed 75 

in these studies are present in and around NGD sites (TERC 2009).  Some, such as benzene, 76 

ethylbenzene, toluene, and xylene (BTEX) have robust exposure and toxicity knowledge bases, 77 

while toxicity information for others, such as heptane, octane, and diethylbenzene, is more 78 

limited.  Assessments in Colorado have concluded that ambient benzene levels demonstrate an 79 
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increased potential risk of developing cancer as well as chronic and acute non-cancer  health 80 

effects in areas of Garfield County Colorado where NGD is the only major industry other than 81 

agriculture  (CDPHE 2007; Coons and Walker 2008;CDPHE 2010).  Health effects associated 82 

with benzene include acute and chronic nonlymphocytic leukemia, acute myeloid leukemia, 83 

chronic lymphocytic leukemia, anemia, and other blood disorders and immunological effects.  84 

(ATSDR 2007, IRIS 2010).  In addition, maternal exposure to ambient levels of benzene recently 85 

has been associated with an increase in birth prevalence of neural tube defects (Lupo 2010).  86 

Health effects of xylene exposure include eye, nose, and throat irritation, difficulty in breathing, 87 

impaired lung function, and nervous system impairment ( ATSDR 2007b).  In addition, 88 

inhalation of xylenes, benzene, and alkanes can adversely affect the nervous system (Carpenter 89 

et al. 1978; Nilsen et al. 1988;  Galvin et al. 1999; ATSDR 2007a; ATSDR 2007b). 90 

Previous assessments are limited in that they were not able to distinguish between risks 91 

from ambient air pollution and specific NGD stages, such as well completions or risks between 92 

residents living near wells and residents living further from wells.  We were able to isolate risks 93 

to residents living near wells during the flowback stage of well completions by using air quality 94 

data collected at the perimeter of the wells while flowback was occurring. 95 

Battlement Mesa (population ~ 5,000) located in rural Garfield County, Colorado is one 96 

community experiencing the rapid expansion of NGD in an unconventional tight sand resource. 97 

A NGD operator has proposed developing 200 gas wells on 9 well pads located as close as 500 98 

feet from residences. Colorado Oil and Gas Commission (COGCC) rules allow natural gas wells 99 

to be placed as close as 150 feet from residences (COGCC 2009b).  Because of community 100 

concerns, as described elsewhere, we conducted a health impact assessment (HIA) to assess how 101 
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the project may impact public health (Witter et al. 2011), working with a range of stakeholders to 102 

identify the potential public health risks and benefits.   103 

In this article, we illustrate how a risk assessment was used to support elements of the 104 

HIA process and inform risk prevention recommendations by estimating chronic and subchronic 105 

non-cancer hazard indices (HIs) and lifetime excess cancer risks due to NGD air emissions.     106 

2.0 Methods 107 

We used standard United States Environmental Protection Agency (EPA) methodology to 108 

estimate non-cancer HIs and excess lifetime cancer risks for exposures to hydrocarbons (US 109 

EPA 1989, US EPA 2004) using residential exposure scenarios developed for the NGD project.  110 

We used air toxics data collected in Garfield County from January 2008 to November 2010 as 111 

part of a special study of short term exposures as well as on-going ambient air monitoring 112 

program data to estimate subchronic and chronic exposures and health risks (Frazier 2009, 113 

GCPH 2009, GCPH 2010, GCPH 2011, Antero 2010).  114 

2.1 Sample collection and analysis:   115 

All samples were collected and analyzed according to published EPA methods.  Analyses 116 

were conducted by EPA certified laboratories.  The Garfield County Department of Public 117 

Health (GCPH) and Olsson Associates, Inc. (Olsson) collected ambient air samples into 118 

evacuated SUMMA® passivated stainless-steel canisters over 24-hour intervals.   The GCPH 119 

collected the samples from a fixed monitoring station and along the perimeters of four well pads 120 

and shipped samples to Eastern Research Group for analysis of 78 hydrocarbons using EPA’s 121 

compendium method TO-12, Method for the Determination of Non-Methane Organic 122 

Compounds in Ambient Air Using Cyrogenic Preconcentration and Direct Flame Ionization 123 

Detection (US EPA 1999).  Olsson collected samples along the perimeter of one well pad and 124 
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shipped samples to Atmospheric Analysis and Consulting, Inc. for analysis of 56 hydrocarbons 125 

(a subset of the 78 hydrocarbons determined by Eastern Research Group) using method TO-12.  126 

Per method TO-12, a fixed volume of sample was cryogenically concentrated and then desorbed 127 

onto a gas chromatography column equipped with a flame ionization detector.  Chemicals were 128 

identified by retention time and reported in a concentration of parts per billion carbon (ppbC).  129 

The ppbC values were converted to micrograms per cubic meter (µg/m
3
) at 01.325 kilo Pascals 130 

and 298.15 Kelvin.    131 

Two different sets of samples were collected from rural ( population < 50,000) areas in 132 

western Garfield County over varying time periods.  The main economy, aside from the NGD 133 

industry, of western Garfield County is agricultural.  There is no other major industry.   134 

2.1.1 NGD  Area  Samples 135 

The GCPH collected ambient air samples every six days between January 2008 and 136 

November 2010 (163 samples) from a fixed monitoring station located in the midst of rural home 137 

sites and ranches and NGD, during both the well development and production.  The site is 138 

located on top of a small hill and 4 miles upwind of other potential emission sources, such as a 139 

major highway (Interstate-70) and the town of Silt, CO (GCPH 2009, GCPH 2010, GCPH 2011).   140 

2.1.2 Well Completion Samples  141 

 The GCPH collected 16 ambient air samples at each cardinal direction along 4well pad 142 

perimeters (130 to 500 feet from the well pad center) in rural Garfield County during well 143 

completion activities.  The samples were collected on the perimeter of 4 well pads being 144 

developed by 4 different natural gas operators in summer 2008 (Frazier 2009).   The GCPH 145 

worked closely with the NGD operators to ensure these air samples were collected during the 146 

period while at least one well was on uncontrolled (emissions not controlled) flowback into 147 
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collection tanks vented directly to the air.  The number of wells on each pad and other activities 148 

occurring on the pad were not documented.  Samples were collected over 24 to 27-hour intervals, 149 

and samples included emissions from both uncontrolled flowback and diesel engines (i.e., from. 150 

trucks and generators supporting completion activities). In addition, the GCPH collected a 151 

background sample 0.33 to 1 mile from each well pad (Frazier 2009).     The highest 152 

hydrocarbon levels corresponded to samples collected directly downwind of the tanks (Frazier 153 

2009, Antero 2010).  The lowest hydrocarbon levels corresponded either to background samples 154 

or samples collected upwind of the flowback tanks (Frazier 2009, Antero 2010). 155 

Antero Resources Inc., a natural gas operator, contracted Olsson to collect eight 24-hour 156 

integrated ambient air samples at each cardinal direction at 350 and 500 feet from the well pad 157 

center during well completion activities conducted on one of their well pads in summer 2010 158 

(Antero 2010).  Of the 12 wells on this pad, 8 were producing salable natural gas; 1 had been 159 

drilled but not completed; 2 were being hydraulically fractured during daytime hours, with 160 

ensuing uncontrolled flowback during nighttime hours; and 1 was on uncontrolled flowback 161 

during nighttime hours.  162 

All five well pads are located in areas with active gas production, approximately one mile 163 

from Interstate-70.   164 

         2.2  Data assessment 165 

We evaluated outliers and compared distributions of chemical concentrations from NGD 166 

area and well completion samples using Q-Q plots and the Mann-Whitney U test, respectively, in 167 

EPA’s ProUCL version 4.00.05 software (US EPA 2010b).  The Mann-Whitney U test was used 168 

because the measurement data were not normally distributed.  Distributions were considered as 169 

significantly different at an alpha of 0.05.   Per EPA guidance, we assigned the exposure 170 
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concentration as either the 95 percent upper confidence limit (UCL) of the mean concentration 171 

for compounds found in 10 or more samples or the maximum detected concentration for 172 

compounds found in more than 1 but fewer than 10 samples.   This latter category included three 173 

compounds: 1,3-butadiene, 2,2,4-trimethylpentane, and styrene in the well completion samples.  174 

EPA’s ProUCL software was used to select appropriate methods based on sample distributions 175 

and detection frequency for computing 95 percent UCLs of the mean concentration (US EPA 176 

2010b).   177 

2.3 Exposure assessment 178 

Risks were estimated for two populations: (1) residents > ½ mile from wells; and (2) 179 

residents ≤½ mile from wells.  We defined residents ≤ ½ mile from wells as living near wells, 180 

based on residents reporting odor complaints attributed to gas wells in the summer of 2010 181 

(COGCC 2011).   182 

Exposure scenarios were developed for chronic non-cancer HIs and cancer risks.   For 183 

both populations, we assumed a 30-year project duration based on an estimated 5-year well 184 

development period for all well pads, followed by 20 to 30 years of production.  We assumed a 185 

resident lives, works, and otherwise remains within the town 24 hours/day, 350 days/year and 186 

that lifetime of a resident is 70 years, based on standard EPA reasonable maximum exposure 187 

(RME) defaults (US EPA 1989).  188 

2.3.1 Residents > ½ mile from well pads 189 

As illustrated in Figure 1, data from the NGD area samples were used to estimate chronic 190 

and subchronic risks for residents > ½ mile from well development and production throughout 191 

the project.  The exposure concentrations for this population were the 95 percent UCL on the 192 

mean concentration and median concentration from the 163 NGD samples. 193 



 12 

2.3.2 Residents ≤ ½ mile from well pads 194 

To evaluate subchronic non-cancer HIs from well completion emissions, we estimated 195 

that a resident  lives ≤ ½ mile from two well pads resulting a 20- month exposure duration based 196 

on 2 weeks per well for completion and 20 wells per pad, assuming some overlap between 197 

activities.  The subchronic exposure concentrations for this population were the 95 percent UCL 198 

on the mean concentration and the median concentration from the 24 well completion samples.  199 

To evaluate chronic risks to residents ≤ ½ mile from wells throughout the NGD project, we 200 

calculated a time-weighted exposure concentration (CS+c) to account for exposure to emissions 201 

from well completions for 20-months followed by 340 months of exposure to emissions from the 202 

NGD area using the following formula: 203 

 CS+c = (Cc  x EDc/ED) + (CS x EDS /ED) 204 

 205 

where: 206 

 207 

Cc = Chronic exposure point concentration (µg/m
3
) based on the 95 percent UCL of the 208 

mean concentration or median concentration from the 163 NGD area samples   209 

EDc = Chronic exposure duration 210 

CS = Subchronic exposure point concentration (µg/m
3
) based on the 95 percent UCL of 211 

the mean concentration or median concentration from the 24 well completion samples 212 

EDS = Subchronic exposure duration 213 

ED = Total exposure duration   214 

2.4 Toxicity assessment and risk characterization   215 

   For non-carcinogens, we expressed inhalation toxicity measurements as a reference 216 

concentration (RfC in units of µg/m
3
 air).  We used chronic RfCs to evaluate long-term exposures 217 

of 30 years and subchronic RfCs to evaluate subchronic exposures of 20-months.  If a subchronic 218 
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RfC was not available, we used the chronic RfC. We obtained RfCs from (in order of preference) 219 

EPA’s Integrated Risk Information System (IRIS) (U. S. EPA 2011), California Environmental 220 

Protection Agency (CalEPA) (CalEPA 2003), EPA’s Provisional Peer-Reviewed Toxicity 221 

Values (ORNL 2009), and Health Effects Assessment Summary Tables (U.S. EPA 1997).  We 222 

used surrogate RfCs according to EPA guidance for C5 to C18 aliphatic and C6 to C18 aromatic 223 

hydrocarbons which did not have a chemical-specific toxicity value (U.S. EPA 2009a). We 224 

derived semi-quantitative hazards, in terms of the hazard quotient (HQ), defined as the ratio 225 

between an estimated exposure concentration and RfC.    We summed HQs for individual 226 

compounds to estimate the total cumulative HI.  We then separated HQs specific to neurological, 227 

respiratory, hematological, and developmental effects and calculated a cumulative HI for each of 228 

these specific effects.    229 

For carcinogens, we expressed inhalation toxicity measurements as inhalation unit risk 230 

(IUR) in units of risk per µg/m
3
.  We used IURs from EPA’s IRIS (US EPA 2011) when 231 

available or the CalEPA (CalEPA 2003).  The lifetime cancer risk for each compound was 232 

derived by multiplying estimated exposure concentration by the IUR. We summed cancer risks 233 

for individual compounds to estimate the cumulative cancer risk.  Risks are expressed as excess 234 

cancers per 1 million population based on exposure over 30 years. 235 

Toxicity values (i.e., RfCs or IURs) or a surrogate toxicity value were available for 45 236 

out of 78 hydrocarbons measured.  We performed a quantitative risk assessment for these 237 

hydrocarbons.  The remaining 33 hydrocarbons were considered qualitatively in the risk 238 

assessment. 239 

3.0 Results 240 

3.1 Data assessment  241 
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Evaluation of potential outliers revealed no sampling, analytical, or other anomalies were 242 

associated with the outliers.  In addition, removal of potential outliers from the NGD area 243 

samples did not change the final HIs and cancer risks.  Potential outliers in the well completion 244 

samples were associated with samples collected downwind from flowback tanks and are 245 

representative of emissions during flowback. Therefore, no data was removed from either data 246 

set.     247 

Descriptive statistics for concentrations of the hydrocarbons used in the quantitative risk 248 

assessment are presented in Table 1.  A list of the hydrocarbons detected in the samples that were 249 

considered qualitatively in the risk assessment because toxicity values were not available is 250 

presented in Table 2.  Descriptive statistics for all hydrocarbons are available in Supplemental 251 

Table 1.  Two thirds more hydrocarbons were detected at a frequency of 100 percent in the well 252 

completion samples (38 hydrocarbons) than in the NGD area samples (23 hydrocarbons). 253 

Generally, the highest alkane and aromatic hydrocarbon median concentrations were observed in 254 

the well completion samples, while the highest median concentrations of several alkenes were 255 

observed in the NGD area samples. Median concentrations of benzene, ethylbenzene, toluene, 256 

and m-xylene/p-xlyene were 2.7, 4.5, 4.3, and 9 times higher in the well completion samples 257 

than in the NGD area samples, respectively.  Wilcoxon-Mann-Whitney test results indicate that 258 

concentrations of hydrocarbons from well completion samples were significantly higher than 259 

concentrations from NGD area samples (p<0.05) with the exception of 1,2,3-trimethylbenzene, 260 

n-pentane, 1,3-butadiene, isopropylbenzene, n-propylbenzene, propylene, and styrene 261 

(Supplemental Table 2).    262 

3.2 Non-cancer hazard indices 263 
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 Table 3 presents chronic and subchronic RfCs used in calculating non-cancer HIs, as well 264 

critical effects and other effects.  Chronic non-cancer HQ and HI estimates based on ambient air 265 

concentrations are presented in Table 4.  The total chronic HIs based on the 95% UCL of the 266 

mean concentration were 0.4 for residents > ½ mile from wells and 1 for residents ≤ ½ mile from 267 

wells.  Most of the chronic non-cancer hazard is attributed to neurological effects with 268 

neurological HIs of 0.3 for residents > ½ mile from wells and 0.9 for residents ≤ ½ mile from 269 

wells.    270 

Total subchronic non-cancer HQs and HI estimates are presented in Table 5.  The total 271 

subchronic HIs based on the 95% UCL of the mean concentration were 0.2 for residents > ½ 272 

mile from wells and 5 for residents ≤ ½ mile from wells.  The subchronic non-cancer hazard for 273 

residents > ½ mile from wells is attributed mostly to respiratory effects (HI = 0.2), while the 274 

subchronic hazard for residents ≤ ½ mile from wells is attributed to neurological (HI = 4), 275 

respiratory (HI = 2), hematologic (HI = 3), and developmental (HI =1) effects. 276 

For residents > ½ mile from wells, aliphatic hydrocarbons (51 percent), 277 

trimethylbenzenes (22 percent), and benzene (14 percent) are primary contributors to the chronic 278 

non-cancer HI.   For residents ≤ ½ mile from wells, trimethylbenzenes (45 percent), aliphatic 279 

hydrocarbons (32 percent), and xylenes (17 percent) are primary contributors to the chronic non-280 

cancer HI, and trimethylbenzenes (46 percent), aliphatic hydrocarbons (21 percent) and xylenes 281 

(15 percent) also are primary contributors to the subchronic HI. 282 

3.3  Cancer Risks 283 

Cancer risk estimates calculated based on measured ambient air concentrations are 284 

presented in Table 6.  The cumulative cancer risks based on the 95% UCL of the mean 285 

concentration were 6 in a million for residents > ½ from wells and 10 in a million for residents ≤ 286 
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½ mile from wells.   Benzene (84 percent) and 1,3-butadiene (9 percent) were the primary 287 

contributors to cumulative cancer risk for residents > ½ mile from wells.  Benzene (67 percent) 288 

and ethylbenzene (27 percent) were the primary contributors to cumulative cancer risk for 289 

residents ≤ ½ mile from wells.         290 

4.0 Discussion 291 

Our results show that the non-cancer HI from air emissions due to natural gas 292 

development is greater for residents living closer to wells.  Our greatest HI corresponds to the 293 

relatively short-term (i.e., subchronic), but high emission, well completion period. This HI is 294 

driven principally by exposure to trimethylbenzenes, aliphatic hydrocarbons, and xylenes, all of 295 

which have neurological and/or respiratory effects.   We also calculated higher cancer risks for 296 

residents living nearer to wells as compared to residents residing further from wells. Benzene is 297 

the major contributor to lifetime excess cancer risk for both scenarios. It also is notable that these 298 

increased risk metrics are seen in an air shed that has elevated ambient levels of several 299 

measured air toxics, such as benzene (CDPHE 2009, GCPH 2010). 300 

4.1  Representation of Exposures from NGD 301 

 It is likely that NGD is the major source of the hydrocarbons observed in the NGD area 302 

samples used in this risk assessment. The NGD area monitoring site is located in the midst of 303 

multi-acre rural home sites and ranches. Natural gas is the only industry in the area other than 304 

agriculture.  Furthermore, the site is at least 4 miles upwind from any other major emission 305 

source, including Interstate 70 and the town of Silt, Colorado.   Interestingly, levels of benzene, 306 

m,p-xylene, and 1,3,5-trimethylbenzene  measured at this rural monitoring site in 2009 were 307 

higher  than levels measured at 27 out of 37 EPA air toxics monitoring sites where SNMOCs 308 

were measured, including urban sites such as Elizabeth, NJ,  Dearborn, MI, and Tulsa, OK 309 



 17 

(GCPH 2010, US EPA 2009b).  In addition, the 2007 Garfield County emission inventory 310 

attributes the bulk of benzene, xylene, toluene, and ethylbenzene emissions in the county to 311 

NGD, with NGD point and non-point sources contributing five times more benzene than any 312 

other emission source, including on-road vehicles, wildfires, and wood burning.  The emission 313 

inventory also indicates that NGD sources (e.g. condensate tanks, drill rigs, venting during 314 

completions, fugitive emissions from wells and pipes, and compressor engines) contributed ten 315 

times more VOC emissions than any source, other than biogenic sources (e.g  plants, animals, 316 

marshes, and the earth) (CDPHE 2009).       317 

Emissions from flowback operations, which may include emissions from various sources 318 

on the pads such as wells and diesel engines, are likely the major source of the hydrocarbons 319 

observed in the well completion samples. These samples were collected very near (130 to 500 320 

feet from the center) well pads during uncontrolled flowback into tanks venting directly to the 321 

air.  As for the NGD area samples, no sources other than those associated with NGD were in the 322 

vicinity of the sampling locations.    323 

Subchronic health effects, such as headaches and throat and eye irritation reported by 324 

residents during well completion activities occurring in Garfield County, are consistent with 325 

known health effects of many of the hydrocarbons evaluated in this analysis (COGCC 2011; 326 

Witter et al. 2011).  Inhalation of trimethylbenzenes and xylenes can irritate the respiratory 327 

system and mucous membranes with effects ranging from eye, nose, and throat irritation to 328 

difficulty in breathing and impaired lung function (ATSDR 2007a; ATSDR 2007b; US EPA 329 

1994).  Inhalation of trimethylbenzenes, xylenes, benzene, and alkanes can adversely affect the 330 

nervous system with effects ranging from  dizziness, headaches, fatigue at lower exposures to 331 

numbness in the limbs, incoordination, tremors, temporary limb paralysis, and unconsciousness 332 
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at higher exposures (Carpenter et al. 1978; Nilsen et al. 1988; US EPA 1994; Galvin et al. 1999; 333 

ATSDR 2007a; ATSDR 2007b). 334 

4.2 Risk Assessment as a Tool for Health Impact Assessment 335 

HIA is a policy tool used internationally that is being increasingly used in the United 336 

States to assess multiple complex hazards and exposures in communities. Comparison of risks 337 

between residents based on proximity to wells illustrates how the risk assessment process can be 338 

used to support the HIA process. An important component of the HIA process is to identify 339 

where and when public health  is most likely to be impacted and to recommend mitigations to 340 

reduce or eliminate the potential impact (Collins and Koplan 2009). This risk assessment 341 

indicates that public health most likely would be impacted by well completion activities, 342 

particularly for residents living nearest the wells.  Based on this information, suggested risk 343 

prevention strategies in the HIA are directed at minimizing exposures for those living closet to 344 

the well pads, especially during well completion activities when emissions are the highest.  The 345 

HIA includes recommendations to (1) control and monitor emissions during completion 346 

transitions and flowback; (2) capture and reduce emissions through use of low or no emission 347 

flowback tanks; and (3) establish and maintain communications regarding well pad activities 348 

with the community (Witter et al 2011). 349 

4.3 Comparisons to Other Risk Estimates 350 

This risk assessment is one of the first studies in the peer-reviewed literature to provide a 351 

scientific perspective to the potential health risks associated with development of unconventional 352 

natural gas resources.  Our results for chronic non-cancer HIs and cancer risks for residents 353 

> than ½ mile from wells are similar to those reported for NGD areas in the relatively few 354 

previous risk assessments in the non-peer reviewed literature that have addressed this issue 355 
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(CDPHE 2010, Coons and Walker 2008, CDPHE 2007, Walther 2011).  Our risk assessment 356 

differs from these previous risk assessments in that it is the first to separately examine residential 357 

populations nearer versus further from wells and to report health impact of emissions resulting 358 

from well completions.  It also adds information on exposure to air emissions from development 359 

of these resources. These data show that it is important to include air pollution in the national 360 

dialogue on unconventional NGD that, to date, has largely focused on water exposures to 361 

hydraulic fracturing chemicals. 362 

   363 

4.4 Limitations   364 

As with all risk assessments, scientific limitations may lead to an over- or 365 

underestimation of the actual risks.  Factors that may lead to overestimation of risk include use 366 

of: 1) 95 percent UCL on the mean exposure concentrations;  2)  maximum detected values for 367 

1,3-butadiene,  2,2,4-trimethylpentane, and styrene because of a low number of detectable 368 

measurements; 3)  default RME exposure assumptions, such as an exposure time of 24 hours per 369 

day and exposure frequency of 350 days per year; and 4) upper bound cancer risk and non-cancer 370 

toxicity values for some of our major risk drivers.   The benzene IUR, for example, is based on 371 

the high end of a range of maximum likelihood values and includes uncertainty factors to 372 

account for limitations in the epidemiological studies for the dose-response and exposure data 373 

(US EPA 2011a).  Similiarly, the xylene chronic RfC is adjusted by a factor of 300 to account for 374 

uncertainties in extrapolating from animal studies, variability of sensitivity in humans, and 375 

extrapolating from subchronic studies (US EPA 2011a).   Our use of chronic RfCs values when 376 

subchronic RfCs were not available may also have overestimated 1,3-butadiene, n-377 
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propylbenzene, and propylene subchronic HQs.  None of these three chemicals, however, were 378 

primary contributors to the subchronic HI, so their overall effect on the HI is relatively small.   379 

Several factors may have lead to an underestimation of risk in our study results.  We were 380 

not able to completely characterize exposures because several criteria or hazardous air pollutants 381 

directly associated with the NGD process via emissions from wells or equipment used to develop 382 

wells, including formaldehyde, acetaldehyde, crotonaldehyde, naphthalene, particulate matter, 383 

and polycyclic aromatic hydrocarbons, were not measured.  No toxicity values appropriate for 384 

quantitative risk assessment were available for assessing the risk to several alkenes and low 385 

molecular weight alkanes (particularly < C5
 
aliphatic hydrocarbons). While at low concentrations 386 

the toxicity of alkanes and alkenes is generally considered to be minimal (Sandmeyer, 1981), the 387 

maximum concentrations of several low molecular weight alkanes measured in the well 388 

completion samples exceeded the 200 - 1000µg/m
3 

range of the RfCs for the three alkanes with 389 

toxicity values:  n-hexane, n-pentane, and n-nonane (US EPA 2011a, ORNL 2009).  We did not 390 

consider health effects from acute (i.e., less than one hour) exposures to peak hydrocarbon 391 

emissions because there were not appropriate measurements.  Previous risk assessments have 392 

estimated an acute HQ of 6 from benzene in grab samples collected when residents noticed odors 393 

they attributed to NGD (CDPHE 2007).   We did not include ozone or other potentially relevant 394 

exposure pathways such as ingestion of water and inhalation of dust in this risk assessment 395 

because of a lack of available data.  Elevated concentrations of ozone precursors (specifically, 396 

VOCs and nitrogen oxides) have been observed in Garfield County’s NGD area and the 8-hr 397 

average ozone concentration has periodically approached the 75 ppb National Ambient Air 398 

Quality Standard (NAAQS) (CDPHE 2009, GCPH 2010). 399 
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This risk assessment also was limited by the spatial and temporal scope of available 400 

monitoring data.  For the estimated chronic exposure, we used 3 years of monitoring data to 401 

estimate exposures over a 30 year exposure period and a relatively small database of 24 samples 402 

collected at varying distances up to 500 feet from a well head (which also were used to estimate 403 

shorter-term non-cancer hazard index).  Our estimated 20-month subchronic exposure was 404 

limited to samples collected in the summer, which may have not have captured temporal 405 

variation in well completion emissions.  Our ½ mile cut point for defining the two different 406 

exposed populations in our exposure scenarios was based on complaint reports from residents 407 

living within ½ mile of existing NGD, which were the only data available.  The actual distance at 408 

which residents may experience greater exposures from air emissions may be less than or greater 409 

than a ½ mile, depending on dispersion and local topography and meteorology.  This lack of 410 

spatially and temporally appropriate data increases the uncertainty associated with the results. 411 

Lastly, this risk assessment was limited in that appropriate data were not available for 412 

apportionment to specific sources within NGD (e.g diesel emissions, the natural gas resource 413 

itself, emissions from tanks, etc.).  This increases the uncertainty in the potential effectiveness of 414 

risk mitigation options.        415 

These limitations and uncertainties in our risk assessment highlight the preliminary 416 

nature of our results.   However, there is more certainty in the comparison of the risks between 417 

the populations and in the comparison of subchronic to chronic exposures because the limitations 418 

and uncertainties similarly affected the risk estimates.      419 

4.5 Next Steps 420 

Further studies are warranted, in order to reduce the uncertainties in the health effects of 421 

exposures to NGD air emissions, to better direct efforts to prevent exposures, and thus address 422 
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the limitations of this risk assessment.   Next steps should include the modeling of short- and 423 

longer-term exposures as well as collection of area, residential, and personal exposure data, 424 

particularly for peak short-term emissions.  Furthermore, studies should examine the toxicity of 425 

hydrocarbons, such as alkanes, including health effects of mixtures of HAPs and other air 426 

pollutants associated with NGD.  Emissions from specific emission sources should be 427 

characterized and include development of dispersion profiles of HAPs.   This emissions data, 428 

when coupled with information on local meteorological conditions and topography, can help 429 

provide guidance on minimum distances needed to protect occupant health in nearby homes, 430 

schools, and businesses.  Studies that incorporate all relevant pathways and exposure scenarios, 431 

including occupational exposures, are needed to better understand the impacts of NGD of 432 

unconventional resources, such as tight sands and shale, on public health.  Prospective medical 433 

monitoring and surveillance for potential air pollution-related health effects is needed for 434 

populations living in areas near the development of unconventional natural gas resources.  435 

 5.0 Conclusions 436 

Risk assessment can be used as a tool in HIAs to identify where and when public health 437 

is most likely to be impacted and to inform risk prevention strategies directed towards efficient 438 

reduction of negative health impacts.  These preliminary results indicate that health effects 439 

resulting from air emissions during development of unconventional natural gas resources are 440 

most likely to occur in residents living nearest to the well pads and warrant further study. Risk 441 

prevention efforts should be directed towards reducing air emission exposures for persons living 442 

and working near wells during well completions.    443 
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Figure 1: Relationship between completion samples and natural gas development area 580 

samples and residents living ≤ ½ mile and > ½ mile from wells. 581 

a
Time weighted average based on 20-month contribution from well completion samples 582 

and 340- month contribution from natural gas development samples. 583 


